A DSL for Image Processing

HIPA: The Heterogeneous Image Processing Acceleration Framework

HIPA Classes

- **Image**
 - input/output buffers
- **Accessor**
 - ROI of input image
 - boundary handling
 - interpolation/filtering
- **IterationSpace**
 - ROI of output image
 - compute kernel description
- **Mask**
 - convolution mask
- **Domain**
 - iteration domain
- **Pyramid**
 - image pyramid description

Domain Knowledge

- LUT
- FF
- BRAM
- DSP
- HC
- LP3D
- LP5
- HC3
- OF
- GPU
- HLS
- OpenCL
- C++
- HLS
- Vivado
- RTL
- C++
- C++
- HDL
- HIPA

Trace and Analyze DSL Code

- allocation of buffers
- data transfers
- kernel executions with data dependencies
- build up dependency graph
- identify memory reuse
- translate to internal representation

Internal Representation

Use internal representation to transform the execution order of HIPA kernels into a pipelined and streamed execution:

- model as a combination of spaces and processes to describe the pipeline
- insert copy processes for multiple kernels reading the same buffer
- prune dead code by traversing in depth-first search starting from output spaces

Generating the Streaming Pipeline

- infer structural description from spaces and processes
- create unique stream for each space
- insert generated kernel code for non-copy processes
- read single value from input stream and propagate to multiple output streams

Kernel Code Generation

- single line buffer in BRAM
- single window buffer in reg.
- pack vector channels into wider stream type (e.g., uint32_t, ...)
- only use single window and line buffer for all channels
- apply vector operations by operator overloading

Results

Throughput: OpenCV vs. HIPA

- increasing algorithm complexity decreases throughput
- faster than Xilinx OpenCV
- Harris Corner (HC) twice as fast
- OpenCV $H = 2$
- HIPA $H = 1$

Resource Costs: OpenCV vs. HIPA

- lower overall resource cost
- higher achievable frequency
- comparable results for Harris Corner (HC) but twice as fast

Targets: GPUs vs. FPGAs

- GPUs suffer dramatically from number of memory accesses
- FPGA latency is almost solely dependent on image size
- ARM Mali T604 suffers from register spilling for Optical Flow (OF)

Selected Publications

Figure 1: Overview of the HIPA Framework

Figure 2: Harris Corner detector as sequential HIPA execution of kernels using host barriers

Figure 3: Internal representation of the Harris Corner detector provided for Vivado

Figure 4: Line buffer and group delay

Figure 5: Pack multiple vector channels into single stream

Figure 6: Throughput comparison

Figure 7: Resource cost comparison

Figure 8: Multiple implementations stemming from the exact same code base