Towards the Automatic Generation of Efficient Geometric Multigrid Solvers for Exascale Computing

Sebastian Kuckuk1, Stefan Kronawitter2, Alexander Grebhhahn2, Christian Schmitt3, Hendrik Ritlitch3, Harald Köstler2

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Computer Science 10 (System Simulation) and 12 (Hardware-Software-Co-Design)
2 Universität Passau, Department of Informatics and Mathematics, Chair of Software Product Lines and Chair of Programming
3 Bergische Universität Wuppertal, Applied Computer Science Group

Project ExaStencils
- Generation of efficient, robust and exa-scalable geometric multigrid solvers

ExaStencils

Sebastian Kuckuk
Harald Köstler
Ulrich Rüde

Alexander Grebhhahn
Sven Apel

Christian Schmitt
Frank Hannig
Jürgen Teich

Hendrik Ritlitch
Matthias Bolten

Stefan Kronawitter
Armin Großlinger
Christian Lengauer

HHG data structures [1] and a 3D FD discretization on uniform grids

References:

Geometric Multigrid
- Smoothing of high frequency errors
- Coarsened representation of low frequency errors

Prototype Solvers and Generated Codes
- Prototype solvers for a 2D FD discretization of Poisson’s equation with HHG data structures [1] and a 3D FD discretization on uniform grids
- Both codes feature a broad spectrum of tunable options and are used to ensure scalability and to collect important data
- Generated solvers are examined as well

Convergence Prediction with LFA
- Local Fourier Analysis is used to predict the convergence rates of a given setting
- Allows the study of various parameter configurations

Performance Prediction and Optimization with SPL
- Apply techniques from the Software Product Line domain to predict the performance of multigrid solver configurations [2]

Code Generation with Scala
- Necessary due to the high variance of the multigrid domain
 - Hardware - CPU, GPU or both? Number of nodes, sockets and cores?
 - Cache characteristics? Network characteristics?
 - Software - MPI, OpenMP or both? CUDA or OpenCL? Which version?
 - MG components - Cycle type? Which smoother(s)? Which coarse grid solver? Which inter-grid operators?
 - MG parameters - Relaxation? Number of smoothing steps?
 - Optimizations - Vectorization? Temporal Blocking? Loop transformations?
 - Problem description - Which PDE? Which boundary conditions?
 - Discretization - Finite Differences, Finite Element or Finite Volumes?
 - Domain - Uniform or block-structured? How to partition?

Low-Level Optimizations
- Performance analysis and comparison of known techniques on different hardware architectures [3]
- Basic optimizations: explicit address precalculation, register blocking and vectorization
- Spatial and temporal blocking as well as a combination (overlapped tiling)

Towards the Automatic Generation of Efficient Geometric Multigrid Solvers for Exascale Computing

Sebastian Kuckuk1, Stefan Kronawitter2, Alexander Grebhhahn2, Christian Schmitt3, Hendrik Ritlitch3, Harald Köstler2

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Computer Science 10 (System Simulation) and 12 (Hardware-Software-Co-Design)
2 Universität Passau, Department of Informatics and Mathematics, Chair of Software Product Lines and Chair of Programming
3 Bergische Universität Wuppertal, Applied Computer Science Group

Project ExaStencils
- Generation of efficient, robust and exa-scalable geometric multigrid solvers

ExaStencils

Sebastian Kuckuk
Harald Köstler
Ulrich Rüde

Alexander Grebhhahn
Sven Apel

Christian Schmitt
Frank Hannig
Jürgen Teich

Hendrik Ritlitch
Matthias Bolten

Stefan Kronawitter
Armin Großlinger
Christian Lengauer

HHG data structures [1] and a 3D FD discretization on uniform grids

References: